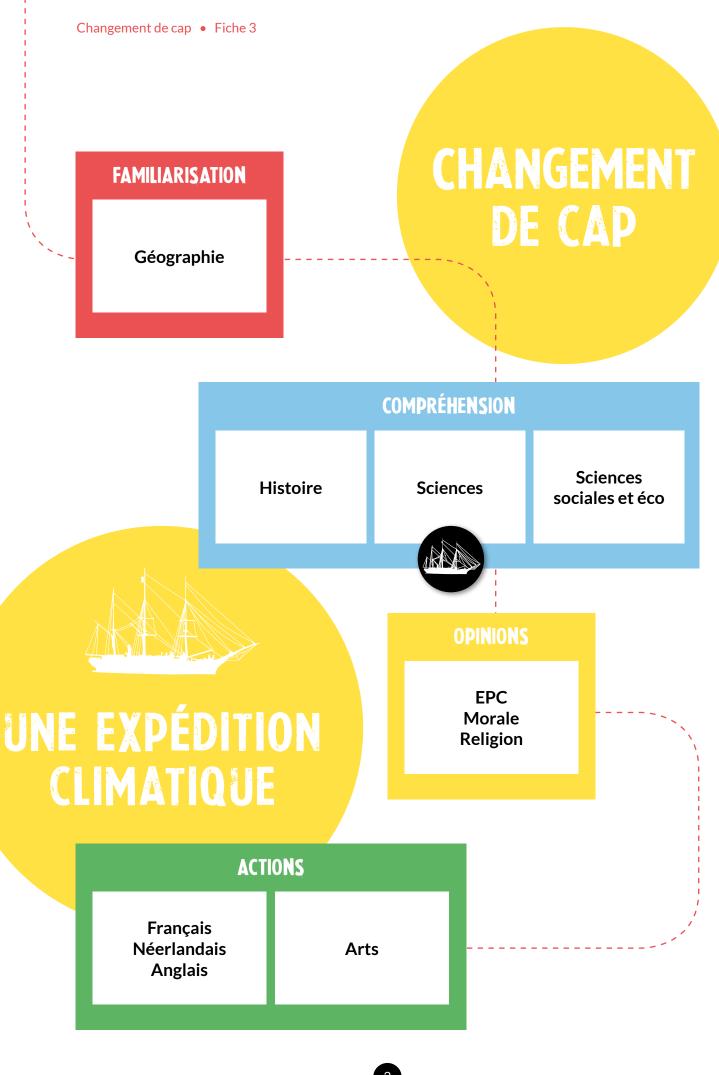


CHANGEMENT DE CAP



UNE EXPÉDITION CLIMATIQUE

FICHE 3/7
Cours de sciences

CONTENU DE LA FICHE	
PHYSIQUE	5
Introduction Choisissez l'activité en fonction du niveau de difficulté et des connaissances préalables des élèves.	
Activité 1 : Causes et conséquences du dérèglement climatique	5
A. Rappel : l'effet de serre (brainstorming) B. Les acteurs des dérèglements climatiques	
Activité 2: Fonctionnement du climat et de son dérèglement – niveau avancé	7
A. Quiz climat	
CHIMIE	8
Introduction Le cours de chimie ne peut être fait que si les élèves ont pris connaissance des causes du dérèglement climatique (voir Physique ou cours équivalent). Choisissez l'activité en fonction du niveau de difficulté et des connaissances préalables des élèves.	
Activité 3 : L'impact du dérèglement climatique sur les océans	8
A. Travail de recherche et de synthèse et mise en commun B. Les acteurs des dérèglements climatiques	
Activité 4 : L'acidification des océans et l'impact sur le plancton – niveau avancé	10
A. L'acidification de l'eau (expérience scientifique)	
BIOLOGIE	12
Introduction Le cours de biologie ne peut être fait que si les élèves ont pris connaissance des impacts du dérègle- ment climatique (voir Chimie ou cours équivalent).	
Activité 5 : Les conséquences du dérèglement climatique – la pompe à baleine	12
A. Découverte du sujet à travers des documents (textes et vidéo) B. Les effets du dérèglement climatique sur moi et le monde (travail individuel) C. Conclusion	
Conclusion Générale	13
Pour aller plus loin	14

Liens avec la matière scolaire:

Formation scientifique - Qualifiant (TQ et P):

UAA11 Activités humaines et modifications environnementales UAA20 Energies : choix judicieux et utilisation rationnelle

Sciences de base (3h) - Transition (G et TT):

BIOLOGIE:

UAA6 Les impacts de l'Homme sur les écosystèmes

CHIMIE:

UAA5 Les liaisons chimiques

UAA8 Grandes classes de réactions chimiques

PHYSIQUE:

UAA7 Sources d'énergie – de l'atome à l'éolienne

UAA8 La Terre et le cosmos (Partie II)

Sciences générales (6h) - Transition (G et TT):

BIOLOGIE:

UAA9 Les impacts de l'Homme sur les écosystèmes

CHIMIE:

UAA5 Les liaisons chimiques et configuration spatiale des espèces chimiques UAA10 Les réactions avec transfert : les réactions acide-base et oxydo-réduction

PHYSIQUE

INTRODUCTION

Lisez le texte d'intro et « Un laboratoire sur la banquise » avec les élèves (voir dossier élève p.8). Choisissez l'activité en fonction du niveau de difficulté et des connaissances préalables des élèves.

ACTIVITÉS

1. Causes et conséquences du dérèglement climatique Type d'activités

Travail en sous-groupes : Brainstorming / débat / discussion.

Objectifs

Introduire le fonctionnement de l'effet de serre. Introduire la manière dont le climat se dérègle et les différentes causes.

Matériel

- Dossier élève p.8
- Annexe 1 : L'effet de serre (à projeter)
- Annexe 2 : Activités humaines (une image par élève, imprimez plusieurs fois certaines images s'il y a plus de 20 élèves)
- Aimants (1/élève) ou papier-collant

Déroulé

A.Rappel: l'effet de serre (brainstorming)

BRAINSTORMING

- Écrivez au tableau « Dérèglement climatique »
- Divisez la classe en sous-groupe
- Chaque groupe choisit 3 mots concernant le réchauffement climatique (5min)
- 1 élève de chaque groupe vient ensuite noter au tableau les 3 mots pour créer un nuage de mot.

DISCUSSION SUR LE RÉCHAUFFEMENT CLIMATIQUE

L'objectif de cette partie est d'amener les élèves à parler **d'effet de serre**. Voici quelques questions pour guider les élèves.

- D'où vient ce réchauffement climatique? A quoi est dû ce réchauffement?
- Qu'est ce qui se passe au niveau mondial?
- Une fois que l'effet de serre est nommé, vous pouvez poser la question suivante : « Comment fonctionne l'effet de serre ? »
 - Montrez l'illustration de l'effet de serre (ANNEXE 1)
 - o Complétez l'explication des élèves si nécessaire.

- Écrivez au tableau « Gaz à effet de serre » et réalisez un nouveau nuage de mots en demandant aux élèves : « Quels sont les principaux gaz à effet de serre ? »
 - o Gaz principaux : CO₂, méthane, vapeur d'eau.
 - Autres gaz à effet de serre : protoxyde d'azote (N₂O), hydrofluorocarbures (HFC), perfluorocarbures (PFC), ozone (O3)

B. Les acteurs des dérèglements climatiques

- Distribuez à chaque élève une image représentant un secteur de l'activité humaine (ANNEXE 2).
- Les élèves circulent dans le local et doivent retrouver les membres de leur groupe pour reconstituer 4 groupes.
 - o Demandez aux élèves s'iels ont reconnu leur secteur d'activité avant de donner la réponse.
 - o Les groupes : 1) Industrie, 2) Bâtiment, 3) Transport, 4) Agriculture.
- Écrivez le nom des quatre secteurs au tableau et demandez aux élèves de venir y afficher leurs images.
- Demandez aux élèves s'iels pensent que d'autres activités humaines influencent le dérèglement climatique.
 - o Savez-vous que les arbres et les océans aident à réguler le climat? Et pourquoi?
 - Parce que ce sont des puits de carbone (= système qui absorbe naturellement une partie du CO₂ présent dans l'atmosphère)
 - Que se passe-t-il au niveau mondial avec les arbres ? La déforestation.
 En Amazonie, c'est principalement la création de pâturages et de champs de soja qui dévaste les zones boisées.

Remarque : en géographie, les élèves auront vu quelques conséquences du dérèglement climatique ; vous approfondissez cette matière par rapport aux océans.

2. Fonctionnement du climat et de son dérèglement

Type d'activités

Quiz

Cette activité est destinée à des élèves ayant déjà une compréhension du fonctionnement de l'effet de serre et du réchauffement climatique.

Objectifs

Découvrir les différents mécanismes physiques derrière le dérèglement climatique

Matériel

- Dossier élève p.8
- Annexe 3 : Quiz

Déroulé

A. Quiz Climat (niveau avancé)

FORMATION DES ÉQUIPES

- Formez les équipes
- Les élèves ont 1 minute pour trouver un nom d'équipe
- Notez les noms des équipes au tableau

QUIZ (ANNEXE 3)

- Chaque équipe à 20 secondes pour réfléchir à la réponse.
- Demandez aux équipes de donner leur réponse et donnez ensuite vous-même la bonne réponse.
- Notez les points de chaque équipe au fur et à mesure
- Donnez l'explication de la bonne réponse

Astuce du coach

- Transposer les questions dans un powerpoint. Lire la question aidera les élèves à pouvoir répondre.
- Demandez à un.e élève d'être responsable de noter les points au tableau. Choisissez un.e élève peu participatif.ve, pour le ou la faire participer sans le ou la léser sur sa participation à l'exercice

CHIMIE

INTRODUCTION

Vous savez à présent d'où vient le réchauffement climatique et vous en connaissez différents impacts. Nous allons nous concentrer aujourd'hui sur son impact au niveau des océans.

Le cours de chimie ne peut être fait que si les élèves ont pris connaissance des causes du dérèglement climatique (voir Physique ou cours ayant une matière équivalente).

ACTIVITÉS

3. L'impact du dérèglement climatique sur les océans

Type d'activités

Travail de recherche et créatif en sous-groupe, création d'affiche

Objectifs

Découvrir les impacts du dérèglement climatique sur les océans.

Faire le lien avec la perte de la biodiversité marine.

Comprendre l'importance de maintenir nos écosystèmes marins en bonne santé.

Matériel

- Dossier élève p.9 à 11
- Annexe 4: Cartes d'instruction (1 carte par groupe)
- Tablettes (pour plus de faciliter avec les QR code) ou ordinateurs portables.
- Matériel de dessin et affiches (1 par groupe)
- Magazines

Déroulé

A. Travail de recherche et de synthèse

Répartissez les élèves en groupes et distribuez à chaque groupe une carte d'instruction (ANNEXE 4) et du matériel de création d'affiche.

Les cartes d'instruction sont différentes pour chaque groupe. Chacune d'entre elle comprend une question de recherche et des sources de documentation.

- L'élévation du niveau de la mer : Quelles sont les causes de cette élévation ?
- L'augmentation de la température de l'eau : Quelles sont les conséquences de cette augmentation sur la biodiversité marine ? Quel pourcentage de chaleur les océans absorbent-ils ?
- Acidification des océans : Qui est à la base de la chaîne alimentaire marine ? Le dérèglement climatique modifie-t-il la biodiversité marine ?
- Diminution du taux d'oxygène: Que provoque la perte d'oxygène dans les océans? A quoi notre biodiversité marine est-elle exposée quand l'oxygène diminue? Y a-t-il une adaptation des espèces sous-marines?

Chaque groupe répond à la question sur sa carte sous forme d'affiche

- Les élèves s'aident des documents mis à leur disposition et de leurs propres recherches sur internet
- Pour créer une affiche, les élèves peuvent utiliser des dessins, pictogrammes, symboles, schémas, images tirées de magazines...
- Demandez aux élèves d'être aussi originaux que possible!
- Les élèves complètent également le dossier élève p.9

MISE EN COMMUN:

- Reconstituez des groupes de sorte que les nouveaux groupes rassemblent au moins un.e élève de chaque question de recherche.
- Les élèves doivent expliquer en max. 2 minutes leur question de recherche et ce qu'iels en ont découvert.

Astuce du coach

- Donnez aux élèves les consignes du timing suivant au fur et à mesure.
- Voici une proposition de timing, utilisez un chronomètre et rappelez aux élèves le temps qu'il reste à chaque étape :
- o Recherche d'informations (vidéos, sites web...): 10 minutes
- o Création de l'affiche : 15 minutes o Mise en commun : 10 minutes

A RETENIR (À DISCUTER AVEC LES ÉLÈVES):

Nous savons que tous les êtres vivants sur cette Terre sont interconnectés. Il est important de prendre soin des écosystèmes si nous souhaitons pouvoir continuer à vivre sur Terre.

4. L'acidification des océans et l'impact sur le plancton Type d'activités

Expérience scientifique Equations chimiques

Objectifs

Découvrir le rôle des océans dans l'absorption du CO₂ Comprendre le phénomène d'acidification des océans Comprendre l'impact sur les organismes et les écosystèmes marins Découvrir l'impact de l'acidification des océans sur nous

Matériel

- Dossier élève p.9 à 11
- Matériel pour expérience (1lot par groupe) :
 - 1 à 2 pailles et 2 récipients
 - 2 coquillages
 - Du vinaigre
 - Deux glaçons
 - 1 pH-mètre ou 1 kit testeur de pH pour piscine OU du jus de chou rouge par groupe (si pas de pH-mètre)

Déroulé

A. L'acidification de l'eau¹

Durant l'expédition de la Belgica, de nombreuses données scientifiques ont été récoltées. Celles-ci servent encore de point de référence pour établir des changements et des dérèglements. Voici une expérience qui illustre l'un de ces dérèglements : l'acidification des océans. Il s'agit de l'une des conséquences de l'effet de serre additionnel.

- Répartissez les élèves en groupe et distribuez le matériel, excepté les coquillages, à chaque groupe.
- Sachant que le pH de l'eau est de 7, l'expérience illustrera l'acidification des océans en acidifiant cette eau avec du CO₂.
 - Les élèves remplissent le récipient d'eau puis, à l'aide de la paille, doivent souffler pendant environ une minute dans le récipient avec l'eau. Cela augmente la concentration en CO₂ dans l'eau. Les élèves mesurent ensuite le pH de l'eau, qui s'est acidifié.
 - o On constate que l'augmentation de la concentration en CO₂ augmente l'acidité de l'eau.
- Que se passe-t-il pour des organismes marins dans un liquide plus acide?
 - o Distribuez deux coquillages par groupe.
 - o Les élèves immergent le coquillage dans du vinaigre. lels immergent le deuxième coquillage dans l'eau et observe ce qui se passe pour les deux coquillages.
 - o On observe que le coquillage se dissout avec l'acidité (représenté par des toutes petites bulles qui remontent à la surface).

¹ L'expérience ci-dessous est reprise de <u>la fiche de Educapoles</u>

- Discussion avec les élèves :
 - Quel impact peut donc avoir l'acidification des océans sur des organismes comme le plancton, qui a également une coquille ?
 - o Pourquoi est-ce un problème que les planctons soient en danger, au regard du dérèglement climatique?

Parce que ceux-ci réalisent la photosynthèse, et donc permettent de diminuer la concentration en CO₂ dans l'eau et dans l'atmosphère, et donc l'effet de serre additionnel.

- Pour aller plus loin dans la réflexion : observer l'impact de la température de l'eau sur l'acidification.
 - o Les élèves vident le récipient de vinaigre et le remplisse d'eau
 - o Distribuez deux glaçons à chaque groupe.
 - o Les élèves mettent les deux glaçons dans un des deux récipients. L'autre reste sans glaçon.
 - o Les élèves soufflent à nouveau dans les deux récipients, à l'aide d'une paille, pendant environ une minute et mesure ensuite son pH. lels observent que l'acidité est plus forte dans le bocal d'eau froide.
 - o On observe donc ici que l'eau froide absorbent davantage de CO₂.
- Parcourir ensemble les visuels récapitulatifs (voir dossier élèves p.10 à 11)

A RETENIR

- L'acidification des océans est due à l'absorption de davantage de CO₂.
- Cela affecte les coraux, et d'autres organismes comme les planctons.
- Le plancton joue un rôle important dans la régulation de la concentration en CO₂, puisqu'ils font de la photosynthèse.

Astuce du coach

 Demandez aux élèves d'illustrer les équations chimiques qui sont à l'origine de chaque phénomène. Pour cela, inspirez-vous de la fiche suivante, page 44 et 48

BIOLOGIE

INTRODUCTION

Les océans sont en danger de multiples manières. Il y a pourtant dans la nature des systèmes fonctionnels qu'il nous revient de protéger afin de ne pas détruire l'équilibre naturel.

Le cours de biologie ne peut être fait que si les élèves ont pris connaissance des impacts du dérèglement climatique (voir Chimie ou cours ayant une matière équivalente).

ACTIVITÉS

5. Les conséquences du dérèglement climatique - l'exemple de la pompe à baleine

Type d'activités

Vidéos Réflexion individuelle

Objectifs

Découvrir des conséquences du dérèglement climatique.

Comprendre la pompe à baleine et sa perturbation, causée par le dérèglement climatique. Se projeter et projeter le monde dans le futur en tenant compte des conséquences du dérèglement climatique.

Matériel

- Dossier élève p.11 à 15
- Vidéo 1*: La pompe à baleine

• Vidéo 2*: La baleine

Déroulé

A. Découverte du sujet à travers des documents (textes et vidéo)

Visionnez les vidéos suivantes :

- Vidéo 1
- Vidéo 2

Et lisez les textes avec les élèves (voir le dossier élève p.11)

A RETENIR (À DISCUTER AVEC LES ÉLÈVES):

Si la pompe à baleine ne permet pas de régler le dérèglement climatique, elle joue son rôle dans la stabilité des écosystèmes. C'est pourquoi il est important de la protéger. Or, la baleine est une espèce menacée.

^{*} Matériel didactique issu de l'exposition temporaire « À la recherche de... LA FIN DU MONDE! Une expédition climatique à bord de la "Belgica" » exposée en 2023 et 2024 au musée BELvue.

B. Les effets du dérèglement climatique actuel sur moi et dans le monde

La pompe à baleine n'est qu'un exemple des conséquences du dérèglement climatique qui peut avoir un impact sur le bon fonctionnement des écosystèmes. Il y en a d'autres qui peuvent avoir un impact sur le monde, et donc aussi sur nous tous.

- Les élèves remplissent individuellement le tableau dans leur dossier élève (p.14), les invitant à se demander quelles seront les conséquences du dérèglement climatique sur elle.ux et sur le monde.
- Pour les y aider, certaines questions sont écrites dans leur dossier :
 - o Est-ce qu'il y aura des conséquences sur moi physiquement?
 - o Cela aura-t-il un impact sur mon futur métier?
 - o Sur mon futur logement?
 - o Sur la sécurité de mon pays?
 - o Sur ma famille?

C. Conclusion

Lisez la conclusion avec les élèves (dossier élève p.15).

CONCLUSION GENERALE

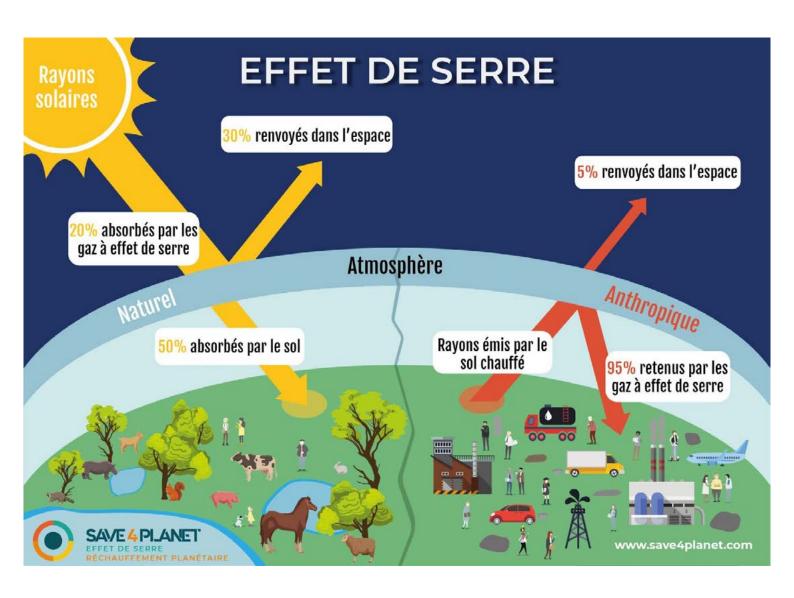
Lisez avec les élèves la conclusion dans le dossier élève (p.15) Questions pour discussion :

- Qu'en dites-vous ? Voulez-vous vous aussi aider les baleines dans la lutte du réchauffement climatique ?
 - o Il faut que tout le monde mette la main à la pâte. On peut commencer par réduire notre utilisation de plastique et limiter notre empreinte carbone. C'est simple, chaque petit geste compte!
 - o Il existe aussi des initiatives communautaires qui protègent les habitats marins menacés par la pollution.
 - Ça te dit de rejoindre un groupe local pour nettoyer les plages ou protéger un spot marin ? L'important est d'agir, ensemble.
- La **pollution** des mers a aussi des retombées directes sur notre santé. Inhaler de l'air chargé de substances nocives ou consommer des fruits de mer contaminés, ce n'est pas le meilleur plan! Alors, comment protéger les **habitats marins**?
 - Favoriser des pratiques durables, sensibiliser notre entourage, et soutenir les politiques publiques qui favorisent la conservation sont des étapes incontournables.

Quelques initiatives existantes:

- Consultez le guide du WWF sur les produits de la mer et consommez du poisson, des mollusques ou des crustacés durables.
- Utilisez des produits d'hygiène naturels et sans microplastiques dans votre salle de bain.
- Ne laissez pas les ballons s'envoler dans la nature, car les animaux pourraient les confondre avec de la nourriture ou s'y empêtrer.
- Ne rincez pas vos pots de peinture, amenez-les au parc à conteneurs.
- Utilisez un sac réutilisable et évitez les emballages inutiles en faisant vos courses.
- Utilisez une gourde et remplissez-la avec l'eau du robinet.
- Ramassez vos déchets après une journée à la mer.
- **Utilisez des produits d'entretien naturels** (savon noir, vinaigre et bicarbonate de soude) pour le nettoyage chez vous. Ces produits sont efficaces, biodégradables et ne polluent pas l'océan.
- Utilisez une crème solaire respectueuse de l'environnement et des organismes marins (comme les coraux par exemple). Si vous allez dans l'eau, protégez-vous avec une crème solaire qui n'est pas néfaste pour l'écosystème marin et qui est tout aussi efficace contre les UV.
- Stages disponibles chez les différentes associations Mapping BeClimate Hub
- Agir pour le climat en passant à l'échelle collective Neo&Nea

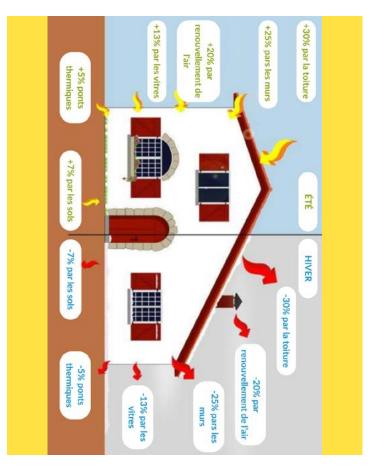
POUR ALLER PLUS LOIN


- Ressources pédagogiques du Réseau IDée
- Océan et cryosphère
 - Expérience/activité B1 l'effet de serre : une analogie séance p56
 - Expérience/activité C2 Dilatation thermique de l'océan et hausse du niveau marin p83
 - o Expérience/activité C6 L'inertie thermique de l'océan et la régulation du climat p102
- Changement climatique et terres émergées
 - Expérience/activité- A5 Cycle du carbone, photosynthèse et respiration p71
- Sources et sites de référence sur la biodiversité :
 - o Notre Planète: qu'est-ce que la biodiversité?
 - o <u>Le WWF-Belgique, pour la biodiversité en danger</u>
 - o Comprendre les enjeux de la biodiversité en danger | BeBiodiversity
 - o Natagora
 - o Préserver nos Océans: Enjeux et Solutions pour la Biodiversité Marine
 - o Des solutions innovantes pour préserver nos océans face à l'acidification
- Visionner les films et courts-métrages de Yann Arthus Bertrand : Filmographie de Yann Arthus-Bertrand - GoodPlanet Belgium
 - o Bangladesh (également proposé en sciences sociales)
 - o Planète océan
 - La soif du monde (également proposé en sciences sociales)
 - Home
 - o Désertification (indirectement lié au parcours Belgica)

Idées d'activités hors classe : (animations de GP et Belvue)

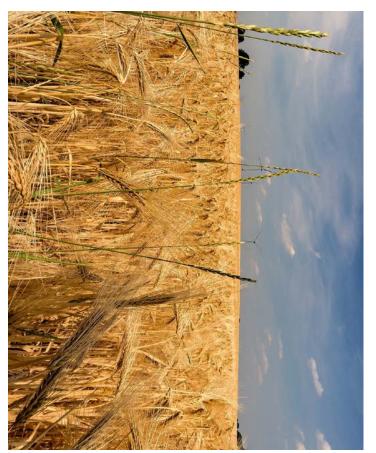
- Ressources d'animations :
 - o <u>Parlement des jeunes wallon.nes</u>: Accompagnement d'une éco-team à l'école.
 - o Visite de l'exposition interactive sur le climat « Belexpo »
 - o Ressources pédagogiques et workshops gratuits au BELvue
 - Offre d'animations GoodPlanet: <u>www.goodplanet.be</u>
 Vous pouvez filtrer les animations par thème (développement durable, alimentation, climat, eau, économie circulaire, énergie, mobilité, nature, villes et communes durables, vivre ensemble)

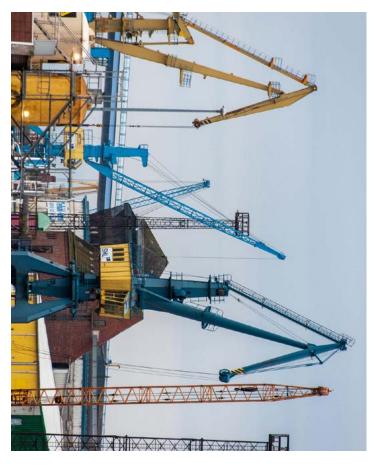
ANNEXE 1

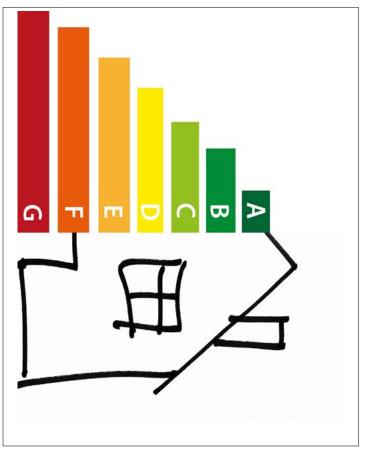

L'effet de serre

ANNEXE 2

Activités humaines







Solutions Activités humaines

BATIMENTS

INDUSTRIE

AGRICULTURE

TRANSPORT

ANNEXE 3

Quiz « La météo de l'Antarctique »

- Qui a dit: « Il neige dehors. Pour s'en protéger, on pourrait utiliser un peu de ce bon vieux réchauffement climatique? »
 - A. Claude Allègre
 - B. Donald Trump
 - C. Javier Milei
 - D. Le Raptor (youtubeur)
- 2. Laquelle de ces phrases décrit le mieux l'effet de serre de l'atmosphère?
 - A. Sous l'action des rayons du soleil, certains gaz présents dans l'atmosphère se désintègrent en dégageant de la chaleur.
 - B. Certains gaz présents dans l'atmosphère captent les rayons infrarouges émis par la Terre et les réémettent vers le sol.
 - C. Certains gaz présents dans l'atmosphère captent les rayons infrarouges émis par le Soleil et les réémettent vers le sol.
- 3. Sans effet de serre naturel, quelle température en moyenne ferait-il sur terre?
 - A. -18°C
 - B. -5°C
 - C. 0°C
 - D. 15°C
- 4. Quelles autre(s) grand(s) facteur(s) permet(tent) de maintenir une température à 15°C?
 - A. La présence de vapeur d'eau dans l'atmosphère
 - B. La présence d'aérosols dans l'atmosphère
 - C. L'effet Albédo
- 5. Et donc avec le dérèglement climatique en cours, est ce que on peut dire que c'est le réchauffement de la température de l'air qui fait fondre les glaciers ?
 - A. Évidemment
 - B. Non
 - C. C'est plus subtil que ça
- 6. Vrai ou faux ? La vapeur d'eau joue un rôle important dans le réchauffement climatique.
 - A. Vrai
 - B. Faux
- 7. Que devient le CO₂ que nous émettons (trouve l'affirmation qui est fausse)?
 - A. Une partie subsiste dans l'atmosphère
 - B. Une partie se dissout dans les océans
 - C. Une partie est absorbée par les plantes
 - D. La plus grande partie se transforme et disparait
- 8. L'acidification de l'océan est une conséquence...
 - A. Du réchauffement de l'air
 - B. Du manque d'oxygène dans l'eau
 - C. De la photosynthèse
 - D. De l'absorption du CO₂ par les océans

- 9. Parmi les phénomènes suivants, lequel ne fait pas monter le niveau des océans?
 - A. La fonte de la banquise
 - B. La dilatation de l'eau sous l'effet de la température
 - C. La fonte des glaciers
 - D. La fonte des calottes glacières
- 10. Pour chaque degré (°C) de plus dans l'atmosphère, la quantité de vapeur d'eau dans l'atmosphère peut augmenter d'environ...
 - A. 2%
 - B. 3%
 - C. 5%
 - D. 7%
- 11. Sélectionnez la/les bonne(s) réponse(s). + 4 ou 5°C de plus d'ici 2100 c'est...
 - A. C'est juste un pull en moins l'hiver
 - B. C'est deux fois pire que +2°C
 - C. C'est quelque chose que on ne peut pas vraiment imaginer.
 - D. C'est un changement drastique des écosystèmes.

Réponses · Quiz « La météo de l'Antarctique »

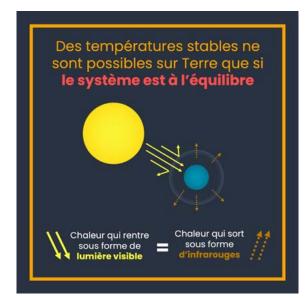
- Qui a dit: « Il neige dehors. Pour s'en protéger, on pourrait utiliser un peu de ce bon vieux réchauffement climatique? »
 - A. Claude Allègre
 - **B. Donald Trump**
 - C. Javier Milei
 - D. Le Raptor (youtubeur)

Explication: La météo, que tu entends tous les jours à la radio, s'intéresse au temps qu'il fait aujourd'hui ou demain, et ça change sans arrêt. Le climat, c'est le temps qu'il fait en général dans une région, sur des années ou même des siècles!

- 2. Laquelle de ces phrases décrit le mieux l'effet de serre de l'atmosphère?
 - A. Sous l'action des rayons du soleil, certains gaz présents dans l'atmosphère se désintègrent en dégageant de la chaleur.
 - B. Certains gaz présents dans l'atmosphère captent les rayons infrarouges émis par la Terre et les réémettent vers le sol.
 - C. Certains gaz présents dans l'atmosphère captent les rayons infrarouges émis par le Soleil et les réémettent vers le sol.

Explication: Les rayons solaires éclairent la Terre. Une partie de ces rayons est réfléchie vers l'espace, une autre est absorbée par l'atmosphère et une autre l'est par le sol. Pour évacuer l'énergie absorbée, ce dernier rayonne à son tour dans le domaine infrarouge. Sans l'effet de serre, la totalité des rayons infrarouges émis par le sol irait directement se perdre dans l'espace. Cependant, certains gaz dits « à effet de serre » ont la capacité d'absorber ces infrarouges, ce qui entraîne une augmentation de leur température. Ils éliminent ensuite l'énergie ainsi emmagasinée en émettant à leur tour des rayons infrarouges dans toutes les directions, y compris vers le sol.

- 3. Sans effet de serre naturel, quelle température en moyenne ferait-il sur terre?
 - A. -18°C
 - B. -5°C
 - C. 0°C
 - D. 15°C


Explication: Sans effet de serre, la température moyenne sur Terre serait environ de -18°C.

- 4. Quelles autre(s) grand(s) facteur(s) permet(tent) de maintenir une température à 15°C?
 - A. La présence de vapeur d'eau dans l'atmosphère
 - B. La présence d'aérosols dans l'atmosphère
 - C. L'effet Albédo

Explication : Plusieurs effets impactent le forçage radiatif. Parmi ces effets, on retrouve notamment l'effet albédo et la présence d'aérosols dans l'atmosphère.

Forçage radiatif: La stabilité climatique est due à un équilibre entre l'énergie reçue sur terre et l'énergie émise vers l'espace. On parle de forçage radiatif dès qu'il y a une modification dans cet équilibre. Comme un thermostat d'une maison, un forçage radiatif positif signifie un thermostat qui augmente et l'inverse pour un forçage radiatif négatif. Physiquement maintenant, comment ça marche vraiment?

Pour faciliter l'explication, nous vous invitons à télécharger les infographies réalisées par <u>le site liglou.fr</u>, dont voici quelques exemples ci-dessous.

- 5. Et donc avec le dérèglement climatique en cours, est ce que on peut dire que c'est le réchauffement de la température de l'air qui fait fondre les glaciers?
 - A. Évidemment
 - B. Non
 - C. C'est plus subtil que ça

Explication: La fonte des glaciers est notamment due au réchauffement de l'air, mais surtout due au fait qu'il y a un déséquilibre entre énergie entrée et sortie (comme vu au-dessus). Mais donc, où s'accumule l'énergie excédentaire? Elle s'accumule, sous forme de chaleur, dans les différentes composantes du système climatique (atmosphère, surfaces continentales, hydrosphère, cryosphère, biosphère). Et c'est ce qui explique que la Terre se réchauffe (excédent d'énergie dans l'atmosphère) ET que les glaciers fondent, car ils reçoivent un excédent d'énergie (sous forme de chaleur).

- Vrai ou faux? La vapeur d'eau joue un rôle important dans le réchauffement climatique.
 - A. Vrai
 - B. Faux

Explication : Plus l'air est chaud, plus il contient de vapeur d'eau. En se réchauffant par effet de serre lié à l'accumulation de dioxyde de carbone, méthane, etc. l'atmosphère contient davantage de vapeur d'eau. La vapeur d'eau étant un gaz à effet de serre, cela augmente l'effet de serre... donc son réchauffement. La vapeur d'eau aggrave donc significativement le réchauffement climatique par un effet de rétroaction positive1. Contrairement au CO₂, ce ne sont pas les émissions humaines de vapeur d'eau qui jouent sur le climat, mais bien le réchauffement de l'atmosphère qui entraîne la hausse de sa concentration en vapeur d'eau.

N.b. Contrairement au dioxyde de carbone et au méthane, la vapeur d'eau ne s'accumule pas dans l'atmosphère et sa concentration y est principalement régulée par la température. Si celle-ci augmente, de l'eau liquide s'évapore et la concentration en vapeur d'eau augmente. Si au contraire la température de l'air diminue, l'eau passe sous forme liquide ou solide et de la pluie, de la rosée, de la grêle ou de la neige se forme. Le temps de séjour de la vapeur d'eau dans l'atmosphère est donc faible et les émissions humaines de vapeur d'eau ne jouent ainsi pas sur le réchauffement climatique.

- 7. Que devient le CO₂ que nous émettons (trouve l'affirmation qui est fausse)?
 - A. Une partie subsiste dans l'atmosphère
 - B. Une partie se dissout dans les océans
 - C. Une partie est absorbée par les plantes
 - D. La plus grande partie se transforme et disparait

Explication : Sur l'ensemble du CO₂ émis par les activités humaines :

- 23% vont dans les océans
- 29% sont absorbés par la végétation
- et 44% restent dans l'atmosphère.

Ceci entraine donc une augmentation de sa concentration. Or, comme le CO_2 est un gaz à effet de serre, cela a comme conséquence d'accumuler de l'énergie et de réchauffer le climat. Le CO_2 ne disparaît pas naturellement, c'est un composé très stable chimiquement : après 100 ans,

40% de l'excès de CO₂ subsiste encore.

8. L'acidification de l'océan est une conséquence...

- A. Du réchauffement de l'air
- B. Du manque d'oxygène dans l'eau
- C. De la photosynthèse
- D. De l'absorption du CO₂ par les océans

Explication : Une partie du CO₂ atmosphérique se dissout au contact de l'océan. On le retrouve ensuite dans l'eau sous différentes formes, dont l'acide carbonique :

Quand le CO₂ se dissout dans l'océan, il se transforme en des ions acides (H2CO3 puis HCO3-). Cela a pour effet d'acidifier l'océan (le pH baisse).

L'acidification a augmenté de 26 % depuis le début de la révolution industrielle (1800). Mais certains modèles de prédiction prévoient une augmentation de 150 % de l'acidité d'ici à 2100. Le rythme actuel de l'acidification de l'océan est donc dix fois plus rapide qu'à toute autre période des 55 millions d'années qui nous ont précédés

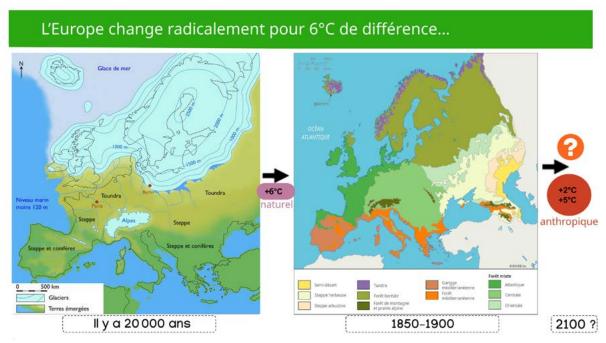
9. Parmi les phénomènes suivants, lequel ne fait pas monter le niveau des océans?

- A. La fonte de la banquise
- B. La dilatation de l'eau sous l'effet de la température
- C. La fonte des glaciers
- D. La fonte des calottes glacières

Explication: La fonte de la banquise n'est pas responsable de la montée des eaux (un glaçon qui fond dans un verre d'eau ne fait pas déborder le verre). Le volume occupé par la glace sous la surface est exactement le même que celui de la glace une fois fondue. C'est <u>le principe de la poussée d'Archimède</u>.

10. Pour chaque degré (°C) de plus dans l'atmosphère, la quantité de vapeur d'eau dans l'atmosphère peut augmenter d'environ...

- A. 2%
- B. 3%
- C. 5%
- D. 7%


Explication: pour chaque degré Celsius supplémentaire, l'air peut contenir 7 % d'eau en plus via l'évaporation. Cela a notamment pour conséquence d'augmenter la formation de nuages (qui par la suite feront plus de pluies) et donc intensifier les régimes de pluies, d'augmenter le risque de pluies torrentielles. Si l'évaporation a lieu sur terre, cela assèche aussi les sols et donc augmente les événements de grande sécheresse. Imaginez un climat à l'équilibre comme une éponge de vaisselle. Et que le cycle de l'eau se fait entre deux boites en plastique ou en verre (une remplie et l'autre vide). Le cycle de l'eau dans un climat stable signifie que l'éponge absorbe une partie de l'eau dans une boite et la rejette dans l'autre boite. Un Climat déréglé est comme une beaucoup plus grosse éponge (comme celle pour les voitures). Elle absorbe tout dans la boite remplie (sécheresse) et vide toute son eau d'un seul coup dans la boite vide (inondation).

L'augmentation de la quantité en vapeur d'eau dans l'atmosphère explique aussi en partie pourquoi les cyclones seront de plus en plus violents. Lorsque l'air se réchauffe et donc contient plus d'humidité il mobilise plus d'énergie lors d'un événement extrême. Cela se traduit par plus fortes pluies et des vent renforcés conduisant à la formation de cyclones puissants.

11. Sélectionnez la/les bonne(s) réponse(s). + 4 ou 5°C de plus d'ici 2100 c'est...

- A. C'est juste un pull en moins l'hiver
- B. C'est deux fois pire que +2°C
- C. C'est quelque chose que on ne peut pas vraiment imaginer.
- D. C'est un changement drastique des écosystèmes.

Explication: l'holocène (période de température moyenne de 15°C dans laquelle nous nous trouvons et qui a permis une sédentarisation de l'homme) a débuté il y 10-12 000 ans à la sortie de la dernière ère glaciaire. Il y a 20 000 ans, l'Europe ressemblée à tout autre chose. Toute l'Europe du Nord était sous un glaçon (calotte glacière) de 3Km d'épaisseur et l'océan était 120 m plus bas qu'aujourd'hui au niveau global. Les écosystèmes terrestres européen ne ressemblaient pas du tout à aujourd'hui. Et pourtant il n'a fallu qu'un réchauffement de 5-6°C en approx 10 000 ans pour arriver au paysage que l'on connait aujourd'hui. +5-6°C en 10 000 ans. Nous parlons aujourd'hui de +3°C (en suivant les engagements des politiques politiques actuels) d'ici 70 ans. Une accélération presque 100 fois plus rapide. Il est très difficile d'imaginer les changements drastiques que cela pourra avoir sur les écosystèmes européens, sur la végétation, sur l'agriculture. Nous n'avons que des idées.

<u>source</u>

ANNEXE 4

Cartes d'instructions

A l'aide des sources citées et des articles partagés, réponds aux questions ci-dessous et crée une affiche pour résumer et présenter ton sujet à la classe.

1. L'ÉLÉVATION DU NIVEAU DE LA MER: QUELLES SONT LES CAUSES DE CETTE ÉLÉVATION?

https://odysseedelaterre.fr

https://www.oceano.org

AUGMENTATION DU NIVEAU MARIN

Le niveau moyen global de la mer a augmenté de 16 cm au cours du siècle dernier et s'est élevé à un rythme toujours plus rapide. Le taux d'augmentation pour 2006-2015, de 3,6 mm/an, est sans précédent et 2,5 fois plus élevé que le taux de 1901-1990. Si quelques millimètres d'augmentation par an peuvent sembler peu, ils s'accumulent au fil du temps et entraînent des inondations extrêmes plus fréquentes dans les régions côtières. Aujourd'hui, la fonte des calottes glaciaires et des glaciers est la principale source d'élévation et a contribué à hauteur de 1,8 mm/ an à l'élévation sur la période 2006-2015.

La dilatation thermique a contribué pour 1,4 mm/an de hausse sur la même période : à mesure que l'eau de l'océan se réchauffe, elle se dilate et occupe un volume plus important, ce qui accentue l'élévation du niveau de la mer. Lorsque le niveau de la mer s'élève, une tempête peut se propager plus loin dans les terres. Le changement climatique peut aggraver les inondations côtières et l'érosion causées par les cyclones tropicaux, et augmenter l'intensité des précipitations et des vents qui y sont associés.

Sources des articles OCE_ResumeOcean.pdf

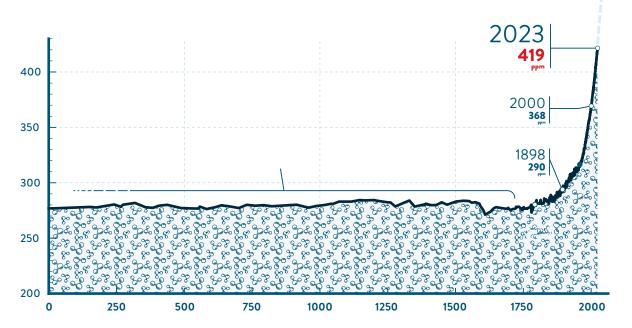
A l'aide des sources citées et des articles partagés, réponds aux questions ci-dessous et crée une affiche pour résumer et présenter ton sujet à la classe.

2. L'AUGMENTATION DE LA TEMPÉRATURE DE L'EAU : QUELLES SONT LES CONSÉQUENCES DE CETTE HAUSSE SUR LA BIODIVERSITÉ MARINE ? QUEL POURCENTAGE DE CHALEUR LES OCÉANS ABSORBENT-ILS ?

https://www.cieau.com

LA TEMPÉRATURE DE L'OCÉAN ET LA SÉQUESTRATION DU CARBONE

Depuis 1970, l'océan a absorbé et stocké environ 93 % de la chaleur excédentaire issue du réchauffement climatique, contribuant à réguler le système climatique. Depuis 1993, le réchauffement de l'océan, et, ainsi, la chaleur absorbée, a plus que doublé. La température océanique a augmenté plus rapidement en surface, où a lieu la majorité de l'absorption de la chaleur, mais les eaux profondes se réchauffent aussi. Le réchauffement des 2 premiers kilomètres de l'océan a principalement eu lieu autour de l'Antarctique, région qui a absorbé entre 35 et 43 % de la totalité de la chaleur depuis les 50 dernières années. Conséquence de ce réchauffement, les épisodes de chaleur extrême qui touchent la surface de l'océan, qualifiées de vagues de chaleur marines, ont doublé en fréquence et sont devenues plus longues, plus intenses et plus étendues depuis 40 ans. On s'attend à voir des canicules marines arriver de manière plus fréquente (20 fois plus fréquentes d'après le scénario RCP2.6 et 50 fois plus fréquentes à la fin du XXIe siècle dans le scénario RCP8.5). Le réchauffement des eaux de surface ainsi que l'augmentation d'apport en d'eau douce issue de la fonte des calottes glaciaires et des glaciers rendent les eaux de surface de moins en moins denses par rapport aux eaux profondes. Cette augmentation du contraste de densité entre les eaux de surface et des profondeurs modifie le mélange entre les couches de l'océan, perturbant les échanges de dioxygène et de nutriments. On parle de stratification pour désigner l'absence de mélange entre les différentes couches. D'ici 2090, que ce soit pour le RCP2.6 ou le RCP8.5, les projections montrent un déclin du taux d'oxygénation et de nutriments dans l'océan. L'océan, important puits de carbone, a absorbé entre 20 et 30 % du CO₂ émis dans l'atmosphère par les activités humaines depuis 1980. Lorsque le CO2 se dissout dans l'eau de surface océanique, il produit de l'acide carbonique, ce qui augmente l'acidité de l'eau de mer en abaissant son pH. Ce processus se nomme l'acidification de l'océan. Depuis la fin des années 1980, le pH de surface a diminué d'environ 0,02 unités par décennie. Cela peut sembler peu, mais de petits changements peuvent avoir d'importantes répercussions sur les écosystèmes [...]. Le degré d'acidification des océans est directement lié à la quantité de CO₂ libérée dans l'atmosphère. Dans le scénario RCP8.5, l'absorption continue du CO_2 atmosphérique par l'océan entraînerait une baisse supplémentaire du pH de l'océan de 0,3 d'ici la fin du siècle. Où va le réchauffement? Océan 93.4 % Atmosphère 2.3 % Continents 2.1 % Glaciers & calottes 0.9 % Banquise arctique 0.8 % Calotte du Groenland 0.2 % Calotte antarctique 0.2 % FIGURE 13 Répartition de l'excès de chaleur lié au réchauffement.

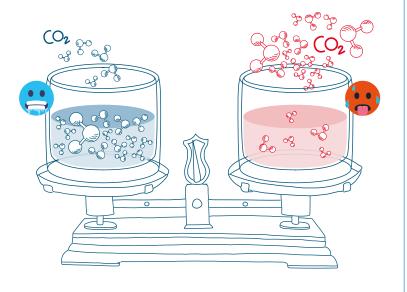

Sources des articles OCE_ResumeOcean.pdf

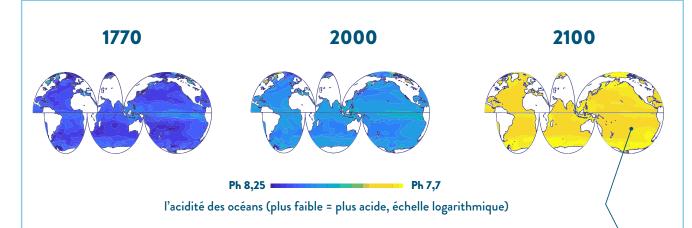
A l'aide des sources citées et des articles partagés, réponds aux questions ci-dessous et crée une affiche pour résumer et présenter ton sujet à la classe.

3. ACIDIFICATION DES OCÉANS : QUI EST À LA BASE DE LA CHAINE ALIMENTAIRE MARINE ? LE RÉCHAUFFEMENT CLIMATIQUE MODIFIE-T-IL LA BIODIVERSITÉ MARINE ?

https://youtu.be/_9DJ7tvgxwE?feature=shared

ACIDIFICATION


Nous savons que les océans captent aujourd'hui environ 30 % de nos émissions de CO₂. Le CO₂ et l'eau produisent ensemble de l'acide carbonique, libérant des ions hydrogène. Plus il y a d'ions hydrogène, plus l'eau devient acide. On appelle ce processus l'acidification des océans. Aujourd'hui les océans sont 30 fois plus acides qu'avant la révolution industrielle.



POINT DE BASCULEMENT

Le CO₂ se dissout naturellement facilement dans l'eau froide. À mesure que la température de l'eau de mer augmente, la capacité des océans à dissoudre le CO₂ diminue.

Le réchauffement climatique entraîne la disparition de nos océans, qui constituent le plus grand tampon pour ces émissions. Par conséquent, il restera davantage de CO₂ dans l'atmosphère ce qui entraînera des températures encore plus élevées.

BLANCHIMENT DES CORAUX

L'acidification des océans rend la croissance des coquillages et des coraux plus difficile, car leur squelette est corrodé. Les récifs coralliens s'affaiblissent donc en raison de l'acidification. Cela pèse sur la biodiversité et l'écosystème des récifs coralliens dans leur ensemble, en affectant les poissons, les invertébrés et d'autres organismes marins qui dépendent du récif.

L'océan, important puits de carbone, a absorbé entre 20 et $30\,\%$ du CO_2 émis dans l'atmosphère par les activités humaines depuis 1980. Lorsque le CO_2 se dissout dans l'eau de surface océanique, il produit de l'acide carbonique, ce qui augmente l'acidité de l'eau de mer en abaissant son pH. Ce processus se nomme l'acidification de l'océan. Depuis la fin des années 1980, le pH de surface a diminué d'environ 0,02 unités par décennie. Cela peut sembler peu, mais de petits changements peuvent avoir d'importantes répercussions sur les écosystèmes [...]. Le degré d'acidification des océans est directement lié à la quantité de CO_2 libérée dans l'atmosphère. Dans le scénario RCP8.5, l'absorption continue du CO_2 atmosphérique par l'océan entraînerait une baisse supplémentaire du pH de l'océan de 0,3 d'ici la fin du siècle.

Le réchauffement et le déclin de la production primaire devraient entraîner d'ici 2100 une diminution de 15 % de la biomasse mondiale de tous les animaux marins (y compris les poissons) par rapport à leur niveau des années 1990 ; dans l'Arctique, cette bio masse va toutefois augmenter. La stratification accrue a réduit la quantité de dioxygène dans l'océan profond, en inhibant son apport depuis la surface, pourtant essentiel aux organismes marins. La perte de dioxygène océanique à l'échelle mondiale est connue sous le nom de désoxygénation de l'océan. Dans de nombreuses régions, le réchauffement et les changements de la production primaire ont entraîné une diminution de l'abondance des espèces de poissons, de mollusques et de crustacés, ce qui s'est traduit par une réduction des captures. La composition des prises a également changé depuis les années 1970, les eaux peu profondes du monde étant de plus en plus peuplées d'espèces d'eau chaude et les stocks de poissons se déplaçant vers les pôles.

Matériel didactique issu de l'exposition temporaire « À la recherche de… LA FIN DU MONDE ! Une expédition climatique à bord de la "Belgica" » exposée en 2023 et 2024 au musée BELvue.

Sources des articles OCE_ResumeOcean.pdf

A l'aide des sources citées et des articles partagés, réponds aux questions ci-dessous et crée une affiche pour résumer et présenter ton sujet à la classe.

4. DIMINUTION DU TAUX D'OXYGÈNE : QUELLES SONT LES CONSÉQUENCES DE LA PERTE D'OXYGÈNE DANS LES OCÉANS ? A QUOI NOTRE BIODIVERSITÉ MARINE EST-ELLE EXPOSÉE QUAND L'OXYGÈNE DIMINUE ? Y A-T-IL UNE ADAPTATION DES ESPÈCES SOUS-MARINES ?

https://www.nationalgeographic.fr/environnement

La biodiversité rassemble la diversité des organismes vivants et leurs relations d'interdépendance. Elle participe, à l'instar d'un service de soutien, au fonctionnement des écosystèmes : ainsi, les écosystèmes avec une forte diversité biologique sont plus résilients au changement climatique. L'océan concentre une grande diversité biologique, avec des « points chauds » de biodiversité, qui correspondent à des régions où la diversité et la densité d'espèces, principalement endémiques, sont importantes : c'est par exemple le cas des barrières de corail.

Au sommet de la chaîne alimentaire initiée par le phytoplancton et suivie par le zooplancton, on trouve les requins et les mammifères marins, tels que les phoques et les baleines, qui, pour certains, migrent sur de très longues distances dans l'océan. Si la diversité des espèces participe au bon fonctionnement des écosystèmes, chaque écosystème contient des espèces clés qui lui sont spécifiques. Alors que l'on recense des milliers de nouvelles espèces marines chaque année, notre connaissance du milieu marin reste limitée, et les biologistes marins estiment que des centaines de milliers d'espèces nous sont encore inconnues

MIGRATION ET REDISTRIBUTION DES ESPÈCES

L'augmentation des températures atmosphérique et océanique modifie la répartition et l'abondance des espèces vivantes. Dans l'océan, en raison du réchauffement, la répartition du phytoplancton, des poissons et des mammifères marins s'est déplacée vers le pôle nord à des vitesses pouvant atteindre plusieurs dizaines de kilomètres par décennie. Les changements ont été plus rapides à la surface de l'océan qu'en profondeur.

Ces changements dans la distribution spatiale des espèces sont accompagnés de modifications dans leurs activités saisonnières. Avec l'allongement de la saison chaude, dans les régions océaniques, polaires et montagneuses, de nombreuses espèces prolongent leurs activités saisonnières et modifient leur comportement. EN RÉSUMÉ La réduction de la cryosphère continentale modifie et continuera à modifier les écosystèmes des zones de haute montagne et de l'Arctique, entraînant des migrations, des changements dans la répartition des espèces et une perte de biodiversité.

LES ÉCOSYSTÈMES MARINS, LES CONSOMMATEURS ET LES PÊCHEURS

Les producteurs primaires, comme le phytoplancton, sont des organismes qui produisent de la matière organique à partir de matière minérale par photosynthèse par exemple. Les consommateurs primaires, comme le zooplancton, se nourrissent des producteurs primaires. La stratification accrue de la couche supérieure de l'océan depuis les années 1970 a modifié l'approvisionnement en nutriments des eaux de surface, affectant la production régionale de phytoplancton, et donc les populations de zooplancton. Toutefois, ces changements sont mal connus, de sorte que leur répartition spatiale est incertaine. Dans l'Arctique, la production primaire nette a augmenté, puisque davantage d'eau est libre de glace. En outre, les proliférations printanières de phytoplancton et d'algues de glace se produisent plus tôt dans l'année. Le zooplancton est directement affecté par les changements dans l'abondance et la distribution saisonnière du phytoplancton.

De plus, comme le plancton est à la base de nombreuses chaînes alimentaires marines, ces changements se répercutent en cascade sur la chaîne alimentaire, affectant sa structure et sa fonction, et ont finalement des conséquences sur la biodiversité et la pêche. Les modèles climatiques projettent un déclin de la production primaire de 4 à 11 % d'ici à 2090 selon le scénario RCP8.5, comme conséquence du réchauffement et de la stratification. En outre, l'acidification de l'océan devrait affecter une importante espèce de zooplancton appelée ptéropodes. Ils jouent un rôle essentiel dans les réseaux alimentaires marins, en particulier dans l'Arctique. Leur coquille est faite de carbonate de calcium et elle est donc vulnérable à l'acidification de l'océan. Le réchauffement et le déclin de la production primaire devraient entraîner d'ici 2100 une diminution de 15 % de la biomasse mondiale de tous les animaux marins (y compris les poissons) par rapport à leur niveau des années 1990 ; dans l'Arctique, cette biomasse va toutefois augmenter.

La stratification accrue a réduit la quantité de dioxygène dans l'océan profond, en inhibant son apport depuis la surface, pourtant essentiel aux organismes marins. La perte de dioxygène océanique à l'échelle mondiale est connue sous le nom de désoxygénation de l'océan. Dans de nombreuses régions, le réchauffement et les changements de la production primaire ont entraîné une diminution de l'abondance des espèces de poissons, de mollusques et de crustacés, ce qui s'est traduit par une réduction des captures. La composition des prises a également changé depuis les années 1970, les eaux peu profondes du monde étant de plus en plus peuplées d'espèces d'eau chaude et les stocks de poissons se déplaçant vers les pôles.

Sources des articles OCE_ResumeOcean.pdf